Vulvovaginal candidiasis: histologic lesions are primarily polymicrobial and invasive and do not contain biofilms
Background
The recent demonstration of a vaginal biofilm in bacterial vaginosis and its postulated importance in the pathogenesis of recurrent bacterial vaginosis, including relative resistance to therapy, has led to the hypothesis that biofilms are crucial for the development of vulvovaginal candidiasis. The histopathology and microbial architecture of vulvovaginal candidiasis have not been previously defined; neither has Candida, containing biofilm been reported in situ. The present study aimed at clarifying the histopathology of vulvovaginal candidiasis including the presence or absence of vaginal biofilm.
Study Design
In a cross-sectional study, vaginal tissue biopsies were obtained from 35 women with clinically, microscopically, and culture-proven vulvovaginal candidiasis and compared with specimens obtained from 25 healthy women and 30 women with active bacterial vaginosis. Vaginal Candida infection was visualized using fluorescent in situ hybridization with ribosomal gene–based probes.
Results
Candida microorganisms were confirmed in 26 of 35 biopsies obtained from women with vulvovaginal candidiasis; however, Candida containing biofilm were not detected in any of the cases. Histopathological lesions were exclusively invasive and accompanied by co-invasion with Gardnerella or Lactobacillus species organisms.
Conclusion
Histopathological lesions of vulvovaginal candidiasis are primarily invasive in nature and polymicrobial and do not resemble biofilms. The clinical significance of Candida tissue invasion is unknown.
Key words
Atopobium ; biofilm ; Candida ; Gardnerella ; Lactobacillus crispatus and iners ; polymicrobial invasion ; vulvovaginal candidiasis
Vulvovaginal candidiasis (VVC), specifically its recurrent form, is a highly problematic and a common clinical therapeutic challenge.1 In clinical practice the diagnosis is mainly based on clinical signs and symptoms and a typical picture apparent on wet mount saline and 10% KOH microscopy.
AJOG at a Glance |
Why was this study conducted?Biofilms are hypothesized as crucial for the development of vulvovaginal candidiasis (VVC). We investigated vaginal biopsies from 35 women with VVC using fluorescent in situ hybridization and compared with specimens from healthy women and women with bacterial vaginosis.
|
Key findingsContiguous Candida adherence was not detected in any of the cases or in controls. Histopathological lesions in 26 of 35 biopsies from VVC were exclusively invasive and accompanied by bacterial co-invasion. Lactobacilli (including L. iners and L. crispatus), Gardnerella, and Atopobium were most frequently co-invading.
|
What does this add to what is known?Polymicrobial mucosal invasion is an unrecognized feature of Candida vaginitis. Our results do not support lactobacilli being beneficial or protective. Different from bacterial vaginosis, we found no biofilm elements in vaginal biopsies obtained from women with VVC.
|
Patients
- Denning D.W. Kneale M. Sobel J.D. Rautemaa-Richardson R. Global burden of recurrent vulvovaginal candidiasis: a systematic review. Lancet Infect Dis. 2018; 18 (PE339-E347)
- Muzny C.A. Schwebke J.R. Biofilms: an underappreciated mechanism of treatment failure and recurrence in vaginal infections. Clin Infect Dis. 2015; 61: 601-606
- Nobile C.J. Johnson A.D. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015; 69: 71-92
- Harriott M.M. Noverr M.C. Importance of Candida-bacterial polymicrobial biofilms in disease. Trends Microbiol. 2011; 19: 557-563
- Höfs S.Mogavero S.Hube B.Interaction of Candida albicans with host cells: virulence factors, host defense, escapestrategies, and the microbiota. J Microbiol. 2016; 54: 149-169
- Gao M. Wang H. Zhu L. Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant candida albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis.Cell Physiol Biochem. 2016; 40: 727-742
- Allison D.L. Willems H.M. Jayatilake J.A. Bruno V.M. Peters B.M. Shirtliff M.E. Candida-bacteria interactions: their impact on human disease. Microbiol Spectr. 2016; 4: 1-26
- Hirota K. Yumoto H. Sapaar B. Matsuo T. Ichikawa T. Miyake Y. Pathogenic factors in Candida biofilm-related infectious diseases. J Appl Microbiol. 2017; 122: 321-330
- Lohse M.B. Gulati M. Johnson A.D. Nobile C.J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018; 16: 19-31
- Blankenship J.R. Mitchell A.P. How to build a biofilm: a fungal perspective. Curr Opin Microbiol. 2006; 9: 588-594
- Ganguly S. Mitchell A.P. Mucosal biofilms of Candida albicans. Curr Opin Microbiol. 2011; 14: 380-385
- Soll D.R. Daniels K.J. Plasticity of Candida albicans biofilms. Microbiol Mol Biol Rev. 2016; 80: 565-595
- Harriott M.M. Lilly E.A. Rodriguez T.E. Fidel P.L. Noverr M.C. Candida albicans forms biofilms on the vaginal mucosa.Microbiology. 2010; 156: 3635-3644
- Swidsinski A. Mendling W. Loening-Baucke V. et al. Adherent biofilms in bacterial vaginosis. Obstet Gynecol. 2005; 106: 1013-1023
- Swidsinski A. Loening-Baucke V. Mendling W. et al. Infection through structured polymicrobial Gardnerella biofilms (StPM-GB). Histol Histopathol. 2014; 29: 567-587
- Alexander Swidsinski, Loening-Baucke V. Evaluation of polymicrobial involvement using fluorescence in situ hybridization (FISH) in clinical practice—application guide. Liehr T (ed). Berlin, Germany: Springer-Verlag; 2017. p. 531-43.
- Gow N.A. Hube B. Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol. 2012; 15: 406-412
- Jabra-Rizk M.A. Kong E.F. Tsui C. et al. Candida albicans pathogenesis: fitting within the host-microbe damage response framework. Infect Immun. 2016; 84: 2724-2739
- Matsubara V.H. Bandara H.M. Mayer M.P. Samaranayake L.P. Probiotics vas antifungals in mucosal candidiasis. Clin Infect Dis. 2016; 62: 1143-1153
- Sobel J.D. Recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. 2016; 214: 15-21